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A primary function of the brain is to form representations of the
sensory world. Its capacity to do so depends on the relationship
between signal correlations, associated with neuronal receptive
fields, and noise correlations, associated with neuronal response
variability. It was recently shown that the behavioral relevance of
sensory stimuli can modify the relationship between signal and
noise correlations, presumably increasing the encoding capacity of
the brain. In this work, we use data from the visual cortex of the
awake mouse watching naturalistic stimuli and show that a similar
modification is observed under heightened cholinergic modula-
tion. Increasing cholinergic levels in the cortex through optoge-
netic stimulation of basal forebrain cholinergic neurons decreases
the dependency that is commonly observed between signal and
noise correlations. Simulations of correlated neural networks with
realistic firing statistics indicate that this change in the correlation
structure increases the encoding capacity of the network.

acetylcholine | neural coding | neural correlations | neuromodulation |
sensory processing

Cortical network responses are shaped by neuromodulators to
efficiently code the sensory world. For example, numerous

studies have shown that cortical levels of the neurotransmitter
acetylcholine impact behavioral and neural responses to sensory
stimuli, improving discrimination performance (1–3) and gen-
erally increasing the amplitude of the neural responses (3–10).
Although the response amplitude can contribute to the amount
of information encoded by individual neurons, the encoding
capacity of whole networks can be profoundly shaped by the
neural correlations (11).
Activity dependencies across neuronal pairs can be analyzed in

terms of the correlation of their total activity (total correlations), in
terms of the similarity of their receptive fields (signal correlations),
or in terms of the similarity in the neurons’ trial-to-trial variability
(noise correlations) (12, 13). Whereas previous work analyzed the
influence of acetylcholine on total correlations (4) or noise corre-
lations (14), it is not clear how these variables alone might influence
neural coding (15). Theoretical research indicates that encoding
capacity depends on the details of the correlation structure, ana-
lyzed in terms of the relationship between signal and noise corre-
lations (12, 15–18). Consistent with the latter observation, two
studies have shown that attention (19) and learning (17) alter the
relationship between signal and noise correlations in a manner that
is thought to increase encoding capacity. Despite the established
importance of the relationship between signal and noise correla-
tions for neural coding, previous work has not analyzed how this
relationship is affected by cholinergic modulation.
For the purpose of evaluating the effect of increases in cortical

acetylcholine on the correlation structure of the visual cortical
network, our current study uses optogenetic stimulation of corti-
cally projecting cholinergic neurons located in the basal forebrain.
Specifically, we analyze the effect of cholinergic stimulation on the
amplitudes of both signal and noise and on the relationship be-
tween signal and noise correlations. We find that increasing cho-
linergic input to the cortex decreases the slope between signal and
noise correlations, in a manner consistent with changes observed
following behavioral manipulations (17, 19). To understand the
impact of this change in the correlation structure on the capacity

of the network to encode information, we use simulations of
correlated neural networks with Poisson statistics. We find that the
decrease in the correlations’ slope increases the encoding capacity
of the network.

Results
In this paper, we present a unique analysis of data from a pre-
viously reported experiment (3). The experiment measured the
activity of mouse visual cortex neurons to repeated presentations
of naturalistic movie sequences with or without concomitant
optogenetic stimulation of basal forebrain cholinergic neurons
(Fig. 1A). The goal of our work is to analyze the specific effect of
cholinergic activity on both signal and noise correlations, as well as
on the relationship between the two. Here, the neural signal is
defined as the average number of spikes in response to a movie
segment, and the neural noise is defined as the residual around the
signal (12). This broad definition of signal implies that we are
focusing on the analysis of the encoding of whole naturalistic
images rather than certain individual features of the image.
We estimated the neural signal corresponding to a given neuron

as the number of spikes in a time bin, averaged over repeated
presentations of a movie (Fig. 1B; see Methods for precise math-
ematical definitions). We estimated the noise, in each presentation,
as the residual activity around the signal (12, 16). Given that the
estimation of the signal and the noise are dependent on the du-
ration of an individual time bin, all of the data reported here are
calculated for several bin sizes, corresponding to divisors of the
total movie length. Once we estimated the signal and the noise, we
calculated the signal-to-noise ratios, the signal correlations, and the
noise correlations (Methods). We calculated these values from the
activity of 113 visual cortex neurons, and 793 neural pairs, from
nine animals (Methods) and compared the values across two con-
ditions (with or without optogenetic cholinergic stimulation).

Significance

The capacity of a network of neurons to represent the sensory
world depends not only on the way individual neurons re-
spond to sensory stimuli but also on the similarity of activity
across neurons comprising the network. This similarity can be
quantified as the correlation of activity across neuronal pairs,
or neural correlations. This work presents a unique finding,
demonstrating that a neuromodulator, in this case acetylcho-
line, can produce specific changes in the correlation structure of
the cortical network that ultimately increase the encoding ca-
pacity of the network.
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We define the signal-to-noise ratio as SN = σ2S=σ
2
ξ, where σ2S is

the variance of the signal, or signal amplitude, and σ2ξ is the var-
iance of the noise, or noise amplitude. This definition of signal to
noise can be understood as the ratio of the dynamic range of the
neuronal responses over the amplitude of the noise. It is directly
linked to the information capacity of a single neuron (20) and has
been proposed as an appropriate measure to quantify neural
coding (21). We found that optogenetic stimulation of cholinergic
neurons increased the amplitude of the neuronal signal (sign test,
P < 0.001 across bin sizes; Table S1 and Fig. 2) but left the am-
plitude of the noise intact (sign test, P > 0.1 across bin sizes; Table
S1 and Fig. 2), thereby increasing the signal-to-noise ratio (P <
0.005 across all bin sizes; Table S1). This specific effect of ace-
tylcholine on the amplitude of the signal, but not the noise, has not
been previously reported. The observed increase in signal-to-noise
ratio indicates that acetylcholine augments the encoding capacity
of individual neurons. The encoding capacity of the network,
however, also depends on the correlation structure of the network.
Despite their putative importance in shaping the encoding capacity

of a network, signal correlations are frequently overlooked, and this
study analyzes their modulation by acetylcholine. We calculated the
signal correlation between each pair of neurons as the Pearson cor-
relation between the pair’s signals across all time bins (12, 13, 16). We
did not find an effect of cholinergic stimulation on signal correlations
(sign test; except for one bin size, all P values are above 0.1; Table S2
and Fig. 3). We did, however, observe a decrease in the magnitude of
noise correlations (sign test, P < 0.001 across all bin sizes; Table S2

and Fig. 3), although the effect is very small compared with a previous
report (14) (Discussion). The noise correlation between a pair of
neurons was defined as the Pearson correlation between the pair’s
noise across all time bins and stimulus (movie) repetitions. (See
Methods for details.)
Another important factor determining the encoding capacity of

the network is the relationship between signal and noise correla-
tions. There have been several reports indicating that signal and
noise correlations are related (13, 22) such that neuronal pairs
with similar receptive fields (high signal correlations) tend to have
larger common variability (high noise correlations). Although this
phenomenon is well documented, only recently it was discovered
that the tight association between signal and noise correlations
decreases under conditions of learning and attention (17, 19). The
association between signal and noise correlations was quantified
(18) by the correlations’ slope, defined as the slope in the signal
correlations vs. noise correlations graph (Fig. 4). This quantifica-
tion is biologically relevant given that existing theoretical work
suggested (but see below) that a decrease in the correlations’ slope
is associated with greater encoding capacity by the neuronal pool
(18). We, therefore, examined the effects of cholinergic modula-
tion on the correlations’ slope. Our analysis revealed that acetyl-
choline decreases the correlations’ slope (P < 0.001 across all bin
sizes; Table S3 and Fig. 4), thereby suggesting an increase in the
encoding capacity of the cortical network.
Although previous work suggests that a decrease in the cor-

relation slope is beneficial for network encoding (18), such work
uses simulations in which all neurons have the same signal-to-
noise ratio and similar (homogeneous) receptive fields; both are
assumptions that can limit the validity of the results (23). To
better understand the role of neural correlations in network

A

B

Fig. 1. Experimental setup, signal and noise estimation. (A) Experimental
setup, adapted from ref. 3. (B) We presented 30 repetitions of a movie se-
quence and calculated the spike count in consecutive time bins (Top). The
signal (black line, Bottom) is estimated as the average number of spikes over
all repetitions. The red markers represent the spike counts corresponding to
a given repetition (marked with a red arrow on the Top). The noise is esti-
mated as the difference between the signal and the spike count. From the
estimations of the signal and the noise, we calculate the signal and noise
correlations of neuronal pairs (see Methods for a precise mathematical
definition of signal, noise, amplitudes, and correlations).
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Fig. 2. Acetylcholine increases the signal amplitude while leaving the noise
amplitude intact. (Top) Signal and noise amplitudes of the response of neurons
in the visual cortex to naturalistic movie sequences, under cholinergic stimu-
lation (ACh) or control (Cont.) conditions. Example taken from a representative
bin size corresponding to the vertical bar shown at the Bottom. (Bottom)
Percent difference of signal and noise amplitudes in the ACh vs. control con-
ditions for various bin sizes, depicted is the median. Cholinergic activity sig-
nificantly increases signal amplitudes (sign test, P < 0.001).
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encoding, we developed a technique that allows quantification of
the network’s encoding efficiency in terms of arbitrarily defined
signal and noise covariance matrices, and that is applied to networks
in which the neurons have Poisson statistics (SI Methods). Because
of limitations in the software and running time of the computa-
tionally heavy simulation, we limit the size of the simulated network
to 25 neurons. The essence of the technique is to generate a set of
correlated signals and to use those signals to generate realizations of
neural activity with correlated-Poisson (24) statistics. Furthermore,
we used Bayesian methods to estimate the probability of a stimulus
given the neural response and quantifying the accuracy of this “ideal
estimator.” This technique can be applied to investigate encoding
efficiency for any possible covariance matrices. In this work, we use
it to evaluate the effect of the correlations’ slope on encoding ef-
ficiency. To do this, we generate a signal covariance matrix, and
then we generate a noise covariance matrix such that the correla-
tions’ slope is high (SI Methods), and subsequently shuffle (to var-
ious degrees) the neurons’ identities in the noise correlations
matrix. This manipulation has the advantage of changing the cor-
relations’ slope while keeping the internal structure of the signal and
the noise correlations intact. The accuracy of the estimator is
quantified as the mean equivocation (SI Methods) over a set of
realizations; a similar result is obtained when we use the success rate
of a maximum likelihood predictor. For all simulation parameter
sets chosen, we robustly observe that, as the correlations’ slope
decreases, the encoding efficiency increases (P < 0.01). Fig. 5 shows
simulation results for five randomly chosen sets of parameters.
Studies considering neuronal models with Gaussian noise in-

dicate that the effect of a given correlation structure in neural
encoding might diminish as the size of the network increases (23,
25, 26). Therefore, we decided to explore how the effect of the
correlations’ slope depends on the size of the network. Re-
peating our analysis in networks of different sizes indicated that,
up to our size limit, the effect of the correlations’ slope increases

as the size of the network increases (P < 0.05 for each set of
parameters; SI Methods and Fig. S1).
In summary, during the animals’ passive observance of visual

stimuli, optogenetic stimulation of cholinergic basal forebrain
neurons modulated the cortical network by (i) increasing the
signal-to-noise ratio of individual neurons, (ii) leaving the signal
correlations intact, (iii) decreasing noise correlations, and (iv)
reducing the dependence between signal and noise correlations
(correlations’ slope) in a manner that increases encoding effi-
ciency. Thus, our analyses demonstrated that acetylcholine can
modulate the statistical dependencies of cortical neurons to in-
crease the encoding capacity of the network.

Discussion
By using optogenetic techniques to activate only basal forebrain
cholinergic neurons while also recording from visual cortex neurons,
our work allows a fine-grained investigation of the role of cortical
acetylcholine on sensory representation. A large body of work
addressing the effect of acetylcholine on neural responses was done
in anesthetized animals (4, 7, 14, 27), where baseline cholinergic
activity is low (28), making it difficult to interpret how the results
generalize to more ecologically valid situations. Previous studies
also used global stimulation of the basal forebrain (29–33), a
technique that activates the entire population of basal forebrain cell
types including cortically projecting cholinergic neurons in addition
to GABAergic neurons projecting to cortex (for review, see ref. 34).
Some work used iontophoretic application of cholinergic agonists
(27), but it is not clear to what degree the amount of agonist lib-
erated emulates a relevant physiological condition.
Our results support previous studies indicating that cholinergic

activity produces an increase in the signal-to-noise ratio of in-
dividual cortical neurons (35–37). However, the definition of
signal to noise used in such studies has been questioned for its
lack of relevance as a descriptor of the encoding efficiency of the
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Fig. 3. Acetylcholine moderately decreases the noise correlations. (Top)
Signal and noise correlations for the cholinergic stimulation (ACh) or control
(Cont.) conditions (example for a representative bin size, as indicated by the
vertical bar shown at the Bottom). (Bottom) Difference in signal and noise
correlations in the ACh vs. Cont. conditions for all bin sizes. Plotted are the
median differences. ACh significantly reduces noise correlations (sign test,
P < 0.001), although the magnitude of the reduction is small.
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(ACh) and control conditions (example for a representative bin size, as indicated by
the vertical bar shown at the Bottom). (Bottom) The correlations’ slope is depicted
across bin sizes; acetylcholine decreases the correlations’ slope (P < 0.005).
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neurons (21). In this work, we use a definition of signal to noise
that more correctly reflects the capacity of single neurons to
encode information (20, 21).
The capacity of a network to encode information depends on

the neural correlations; however, the influence of acetylcholine on
the correlation among neurons has not been thoroughly explored.
Activation of cortical acetylcholine decreased the correlation in
the total activity of neuronal pairs (4), which depends not only on
the signal and noise correlations but also on the signal-to-noise
ratios (38). Acetylcholine also decreased the noise correlations
(14); our results are consistent with this decrease, although the
effect we observe is very small. This difference might be related to
the fact that the referenced work (14) used a different species and
brain region, and it was carried out in anesthetized animals. The
latter difference is particularly important because in anesthetized
preparations cholinergic levels are low and correlations are high
(39, 40). Decreases in noise correlations have also been shown to
be induced by increased attention (41, 42). However, the effect of
these reductions on neural encoding is not entirely clear (15).
Signal correlations are presumably an important factor in

shaping the encoding capacity of the network. However, there is
a paucity of data regarding their modulation by acetylcholine.
Signal correlations, however, can be indirectly related to the
relationship between the neurons’ receptive fields (13). If all
neurons had sharper fields, the overlap in their activity would be
smaller and the magnitude of the signal correlations would also
be smaller. Thus, the lack of effect on signal correlations that we
observe is consistent with the varied effect of acetylcholine on
receptive fields found in previous work (35).
Seminal work regarding the influence of noise correlations on

neural encoding indicates that these correlations are particularly
harmful when they parallel the similarity between the receptive
fields of corresponding neurons (15, 25). This is in accordance
with work by Gu et al. (18) suggesting that a high correlations’
slope is associated with poor encoding efficiency. More recent
studies indicate that noise correlations are limiting for neural

coding when they are proportional to the product of the deriva-
tives of the tuning curves (43), known as differential correlations.
This measure has been associated with the signal correlation (44),
as it reflects the local similarity between tuning curves.
The work cited above focuses on studying how the network is

encoding a continuous parameter (such as an orientation angle). It
is not clear, however, how that framework can be applied to more
naturalistic situations in which the network is encoding a large
combination of nominal and parametric variables. When studying
how the network represents a parameter, investigators typically
measure representation similarity across neurons in terms of tuning-
curve similarity. A more naturalistic approach calls for the use of
signal correlations, which quantify the similarity—across neurons—
of the signals’ probability distribution. The idea that encoding effi-
ciency depends on the relationship between signal and noise cor-
relations has existed for a long time (16, 45, 46). Work expressing
that view analyzes discrimination between two stimuli using a single
pair of neurons, without consideration of how their conclusions can
be extrapolated to systems with many neurons and many stimuli.
Here, we present a method to analyze encoding efficiency in

terms of full signal and noise covariance matrices, thereby pro-
viding a more holistic and accurate framework to understand
neural coding. In this work, we do not assume that the noise is
normally distributed (15, 23, 25, 47); rather, we study a model in
which neurons respond to the stimuli in a discrete manner (48)
with a Poisson probability distribution (38). This distinction is of
importance because theoretical studies show that taking into ac-
count the discrete nature of neural activity influences the way the
brain encodes stimuli (38, 48). When applying this more realistic
method to investigate the role of the correlations’ slope in neural
encoding, we find that, as previous literature suggests (18), the
encoding efficiency increases as the correlations’ slope decreases.
A limitation of studies considering correlated discrete neural

statistics is that the size of the networks investigated is small (38,
48); in this case, we use networks of 25 neurons. The observation
that the magnitude of the effect we observe increases with the group
size, suggests that the effect is also present in larger networks. We
note, however, that models using neurons with Gaussian noise
suggest that results pertaining to small networks, as the ones treated
in this and previous work, may not generalize to very large networks
(15, 23, 25, 26).
Our selection of a Poisson model is motivated by its widespread

use and its consistency with the discrete nature of neural activity.
Recent work (49) indicates that a more nuanced model can better
capture some characteristics of neural activity. Such a model can
be characterized as instantaneously Poisson, in the sense that it is
Poisson at any given moment, with the neurons’ rate being mod-
ulated by a gain factor that changes slowly over time and is shared
across large swaths of the cortex. Thus, our Poisson model is not
incompatible with the latter. The results presented here are valid
as long as we consider that, at any given moment, our ideal de-
coder has information about the gain factor (26).
Despite the literature’s suggestion that a tight association between

signal and noise correlations is particularly bad for encoding, few
studies have examined how this association is influenced by behavioral
contingencies. One study of avian auditory cortex (17) indicates that
learning and behavioral relevance of the auditory stimuli alter the
relationship between signal and noise correlations, inverting the sign
of the correlations’ slope and thus making encoding more efficient. A
more recent investigation (19) does not study signal correlations per
se, but uses an alternative measure of receptive field similarity,
showing that attention influences neural firing in such a way that the
noise correlation of neuronal pairs with similar receptive fields de-
creases, whereas the noise correlation corresponding to neuronal pairs
with dissimilar receptive fields increases. Here, we report that an
analogous effect is elicited by enhanced cholinergic activation, sug-
gesting acetylcholine as a potential candidate for shaping the cortical
neural dynamics associated with attention and learning.
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Fig. 5. Encoding efficiency decreases as the correlations’ slope increases. We
developed a method to study encoding efficiency as a function of the signal and
noise covariance matrices in populations of correlated Poisson neurons. The figure
shows the average equivocation, measured in bits, of an ideal estimator; a larger
equivocation can be associated with a smaller encoding efficiency. Each color
corresponds to a choice of simulation parameters; lines represent linear regressions.
Across all sets of parameters studied, we observe that, as the correlations’ slope
increases, the encoding efficiency decreases (P < 0.01 for each set of parameters).
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Methods
The neural data presented in this paper have been published elsewhere (3).
However, all of the analyses and figures presented herein are our results
generated by a unique quantitative approach.

Animals and Surgery. All procedures were approved by the Animal Care and
Use Committee at the University of California, Berkeley. Experiments were
performed on both male and female adult mice (2–6 mo old) weighing 20–
45 g. The animals were housed on a 12/12-h light/dark cycle in cages of up
to five animals before the implants, and individually after the implants.
Data came from a total of nine ChAT-ChR2(H134R)-EYFP mice (50) (line 6;
The Jackson Laboratory; B6.Cg-Tg(Chat-COP4*H134R/EYFP)6Gfng/J; stock
number 014546).

Details about the surgical procedures and recordings can be found elsewhere
(3). Briefly, we implanted a stainless-steel head plate under isoflurane anesthesia
(5% induction and 1.5% maintenance). Moreover, a reference epidural screw
was implanted above the left frontal cortex, and a half-drilled craniotomy was
made to mark the location of the monocular region of the right V1, which was
then sealed with a silicone elastomer (Kwik-Cast; World Precision Instruments).
The animals were also implanted with a cannula to optogenetically target
the basal forebrain (coordinates from bregma: anteroposterior, −0.5 mm;
mediolateral, 1.8 mm; dorsoventral, 3.8 mm). Temperature was kept at 37 °C
throughout the procedure using a heating pad, and the mice received two
doses of buprenorphine (0.05 mg/kg, one before surgery and the other 6–8 h
later) and supplementary analgesia with meloxicam (5 mg/kg) as necessary.
They were allowed to recover for at least a week before recordings.

At the start of each recording session, the mouse was placed on a spherical
treadmill under light isoflurane anesthesia. We performed a craniotomy
∼300 μm in diameter over V1, preserving the dura. A laminar silicon probe
was then inserted (∼800 μm long, with up to 32 sites spaced by 50 μm;
NeuroNexus Technologies; models polytrode 1B, 1C, or poly2). An optic fiber
was then inserted through the implanted cannula to target the basal fore-
brain. The mouse was removed from anesthesia and allowed to recover for
at least 45 min before recording.

Optogenetic Stimulation. Laser light was delivered to the basal forebrain via
an optic fiber 200 μm in diameter (Thorlabs) inserted through and pro-
truding 0.5 mm beyond the implanted cannula. We used a 473-nm DPSS
laser (CrystaLaser or Shanghai Laser and Optics Century Company) at a power
of 1–3 mW at the fiber tip, delivered in 5-s square pulses. The laser was con-
trolled by TTL pulses generated by the amplifier (Tucker-Davis Technologies).

Visual Stimulation. Visual stimuli were generatedwith a GeForce 7300 Graphics
card (NVIDIA) in a PC running custom-written software and presented on a
gamma-corrected 7” LCD monitor (Xenarc Technologies; maximal luminance,
250 cd/m2) with a refresh rate of 75 Hz. The monitor was placed 10 cm away
from the left eye. All stimuli were presented in a 50° × 50° region centered at
the average receptive field location of all simultaneously recorded units. The
natural movie stimuli consisted of three 5-s clips selected from the van Hateren
natural movie database (51). Each image was repeated for three frames,
resulting in an effective frame rate of 25 Hz. Each trial started with 1 s of gray
screen, followed by 1 s of the first movie frame, 5 s of movie, and 1 s of the last
frame. Each movie was repeated 30 times in three blocks. Cholinergic stimu-
lation and control conditions were interleaved.

Electrophysiology, Spike Sorting, and Neuron Selection. Spiking activity was
recorded using a 32-channel TDT RZ5 (Tucker-Davis Technologies). Signals
were filtered at 0.6–6 kHz and stored as raw voltage traces at 25 kHz. Spikes
were detected off-line with custom-written software. We grouped nearby
channels of the silicon probe into groups of three or four and performed
semiautomatic spike sorting using Klusters (52). Spike clusters were considered
single units if their autocorrelograms had a 2-ms refractory period and their
cross-correlograms with other clusters did not have sharp peaks within ±2 ms

of zero lag. We excluded cells with average firing rates <0.5 Hz. We included
all neurons in the analysis, whether or not they had a clear response to the
stimuli. We took this approach considering that a neuron can contribute to
population encoding even if it does not have an individual response to the
stimuli. The results are equivalent, when we consider only neurons that re-
spond to the stimuli, as assessed by an ANOVA with time bin as independent
variable, neural activity as dependent variable, and inclusion criterion P < 0.05.

Calculation of Signal-to-Noise Ratios, Signal Correlations, and Noise Correlations.
The three movie sequences were concatenated, thus generating a single 15-s
sequence that is repeated 30 times. The number of spikes was counted on
consecutive nonoverlapping time bins.

We designated rij,t as the number of spikes that neuron i fires on the jth
repetition of the movie for bin centered at time t. We estimated the
signal corresponding to neuron i and time t as the average of the spike
counts taken over the 30 repetitions: Sit = Ærij,t æj. We then estimated the
noise, for each neuron, time bin, and repetition, as the actual spike count
minus the signal: ξij,t = rij,t − Sit. We estimated the signal covariance be-
tween two neurons as the unbiased covariance of the signals calculated
over all time bins σ2Si Sl = ð1=ðT − 1ÞÞPT

t=1ðSit − ÆSit ætÞðSlt − ÆSltætÞ and the noise
covariance as the unbiased covariance over all time bins and repetitions
σ2ξiξl = ð1=ðJT − 1ÞÞPR

r=1

PT
t=1ξ

i
j,tξ

l
j,t (12). From the covariance matrices, we

calculated the signal and noise amplitudes as the respective variances
(σ2Si= σ2SiSi and σ2ξi= σ2ξiξi ); and the correlations as the covariance normalized
by the product of the SDs.

To calculate the correlations’ slope, we use total minimum squares, which
minimizes the distance of the regression slopes to the data points and,
therefore, makes no distinction between independent and dependent var-
iables. The results are similar when using an ANOVA treating signal corre-
lations as independent variables and noise correlations as dependent
variables, as done in refs. 17 and 18.

Cholinergic Stimulation vs. Control Conditions. To calculate the effect of
cholinergic stimulation on the amplitude of the signals, we calculated their
difference in the cholinergic vs. control conditions. As the distribution of
differences (across all neurons) is not normal (Lilliefors test, P < 0.01), we
report the medians and use the sign test to assess for statistical differ-
ences. The distribution of the differences of noise amplitudes, the differ-
ences in signal correlations, and the differences in noise correlations is also
not normal (Lilliefors test, P < 0.01). Therefore, again, we report the me-
dians and use the sign test to assess for statistical differences. To calculate
error bars, we use bootstrap methods. We randomly draw neurons with
replacement and extract the variable of interest, repeating this process
10,000 times. The error bars in the figures represent the 95% confidence
interval of the bootstrap distribution. The estimation errors in Tables S1–
S3 represent the SD of the bootstrap distributions.

To calculate statistical differences across conditions in the correlations’
slope, we use a bootstrap method. We draw neuron pairs with replacement
and calculate the total least-squares regression, repeating this procedure
10,000 times. To calculate the P value, we perform an unpaired t test of the
resulting distributions. The error bars shown in the figures represent the
95% confidence interval of the bootstrap distribution.

Data and Code. Data and Matlab code for the simulations can be accessed at
https://github.com/victorminces/neural-coding.
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